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DOVE, a Rational Analysis of Sparse Data

Realistic parameters are attainable in spite of missing data.
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DOVE is a handy procedure for predicting missing data and forcing every para-
meter in the fitted expression to have a simple, discrete, realistic, physical meaning.
The acronym DOVE, standing for "dual obligate vector evaluation", refers to its two-
phase evaluation of all parameters, obligating them by least squares in phase 1,
and additionally obligating them in phase 2 by subsidiary conditions that are
supported by information other than the data (10).

Phase 1

A A A A s

Equation 1 embodies the least squares criterion of fit (1).

2
E § sij!i(gij.zij) minimum (1)
Here z and p refer to observed and predicted data, j specifies the variable of
main interest, i specifies all other variables, Eij is unity if Eij exists but

zero for any ij combination not observed, and are suitable statistical weights.

w
_i
Equation 2 is a generalized form of a widely applicable expression for

predicted data.

n
Byy T ! Simimy ¥ &4 2)
m=1
Its parameters comprise factors f, slopes s and intercepts ¢ (2). However, the
confusion of double subscripts on factors and slopes can be avoided by a notation
using different factor and slope symbols for each different product term or mode m.

Therefore we will switch to expressions for Bij such as

Byy =&y (3)
gij-gilgj+£i (4)
By "8 5, %0, 3, %8, (5)
Byy "8 X +h; ¥, 8 04%8 (6)

or an equation with even more modes as soon as we have decided on the number, n,
of modes to include. .
The subscripts, j and i, need elucidation. Subscript j refers to the main or

primary variable, while subscript i refers to all other variables. To be more
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precise, j i1s a numerical index for a specific example of the principal variable.
In the past, this specific example has been variously called a case, individual,
object, entity, or unit. Since most of these names are ambiguous or cumbersome,
we will call it a "jot". Subscript i is a numerical index for a group having a
common set of all the other variables. This group has also been called a variable,
attribute, characteristic, property, class, or series. We will call it an "ilk"
(3). For example, in a study of solvent effects the main variable is the solvent.
A j of 1 might denote that water is the jot, while a j of 2 might identify the jot
as ethyl alcohol. An i of 1 might refer to an ilk composed of logs of rate constants
for a particular reaction at 25°C in all the solvents in which it has been studied,
while i=2 might mean an ilk of spectral measurements of the frequency for a parti-
cular electronic transition of a particular compound in different solvents.
Equations 4, 5 or 6 might suggest that we are only fitting a line, plane or

hyperplane, respectively. If the factors (x ...) were all known in advance,

s Yo
this would indeed be only a straightforward {inegr regression analysis to evaluate
the i-subscripted parameters. However, if any of these factors are unknown, the

. observed data must be used to determine j-subscripted parameters as well as i-
subscripteq parameters. Thus, in general this is a nonlinear rather than a linear
least squares problem. Furthermore, the phase 1 least squares is more general
than linear for another reason: any of the factors produced could prove to be a

nonlirear function of one of the other factors or of several of them.

Phase 2

The least squares condition, eq. 1, is not, in general, sufficient to determine
the parameters 8, and Emj uniquely. For example, if 215 satisfies eq. 4, then all

—im
the values of a, could be doubled while all the values of 2 are halved without
_affecting the values of Bij or the criterionof fit of eq. 1.
Therefore we propose to follow the tradition (embodied in the Brgnsted catalysis

law and the Hemmett equation (4)) of making the factors represent conceptually simple

“‘!F physical influences of jots rather than only a compact means for representing or
g predicting data. For this purpose we usually need to transform all phase 1 parameters
g_ into new ones having a simpler and c. :arer interpretation, by incorporating a number
; of physically meaningful, independent, subsidiary conditions corroborated by other
&

information than the data zij'

Such transformations are far from obvious when expressions as complicated as
eq. 5 or 6 hold. In fact, the interpretation of observed or measured data is then
always confounded and invalid conclusions about modes and parameters have usually
been drawn, because the jot affects the system under study by two or more

mechanisms of interaction rather than one, and the relative importance of the n
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mechanisms changes with both the jot and the ilk (3,5).
The total number of necessary subsidiary conditions for n=2 (equation 5)
is derived below, as an example. The derivation from eq. 2 for any other number
of modes is similar. First express all Eij (predicted data from a converged
least-squares solution) as the product of a row vector ;' of the i-subscripted
parameters times a column vector g' of the j-subscripted parameters and unity (6).

The primes indicate values calculated in phase 1.

%y
I - (gi‘ R e E g; = xj’
1

No individual Bij is8 changed by insertion of the 3x3 unity (identity) matrix u

or its equal T~1 T between ;; and J ~

:j'

)"1
95 Sl TV R ™
Ed (8)
" Rl g, 2y
i 4" 2 5 :

are constants that are equally good solutions of eq. 1.
-Eij -§1gj- ai xj +b1 yJ +C1 9)

Five transformation equations (10-14, representing each parameter) derived

from equations 7 and 8 convert the old (primed) set of parameters to the new
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(unprimed) set. Matrix T =, the inverse of T, was used to derive equations 12-14.

By EE s (103
as ™ Eglfﬂ‘ * Egzlj‘ + Ly, (11
3, = (£958, 7~ £yb, ") /det (12)
b, = (&);8," - £1,b,;")/det (13)
£ %8 * HEyatsy - 5138508, " + (5585, ~ 55,500, Mder  (14)
det (15)

= (&1187 - L1582))
Obviously, T must be chosen so that det # 0.

There are six degrees of indeterminacy since six elements Eil to t,, are
unspecified. To remove this indeterminacy, we must specify six independent
subsidiary conditions and use them to evaluate these six elements.

Four of the six necessary conditions are trivial in this example where n=2,
because 2 references and 2 standards may be specified arbitrarily. Equating the
factor for one jot in each mode to a reference value (commonly zero) is analogous
to choosing average sea level as a height reference or the freezing point of water
as a temperature reference. Equating a particular factor or slope to a standard
value (never zero, commonly unity) is analogous to choosing the meter as a standard
of length or K as a unit of temperature. It merely fixes the size of the scale
or units in which factors for that mode are expressed.

The remaining two subsidiary conditions are critical ones and should be chosen
with care and clearly stated, because they do have physical meaning and must be
substantiated by other information than the data Eij to ensure that all of the
transformed factors and slopes will be physically simple and meaningful.

In general, the total number of necessary subsidiary conditions is Ea+g,
of which 2n are trivial and gzﬁg are critical.

The transformation of the parameters is required only once, after convergence
has been reached in phase 1, and is in fact much simpler in program coding and
much faster in computer execution time than any one of the iterative cycles
preceding convergence. Nevertheless, more prior thought and more careful judgement
is required in phase 2 than in phase 1.

There are circumstances where subsidiary conditions and the corresponding

parameter transformation of phase 2 are unnecessary. First, one might want to

know the correlation coefficient between observed z and predicted p data corresponding

to one or more eq. 2 expressions for Eij' Neither correlation coefficients nor
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Eij values are changed by phase 2. The number of modes could be deduced as the
n value that gives the highest correlation coefficient. Second, one might want
to use one of the expressions, probably the one yielding the highest correlation
coefficient, to estimate unmeasured or missing data. Although principal com-
ponents and other standard factor analyses cannot be relied on when there are
missing data (3), DOVE can. However, no meaning or significance can be attached
to the parameters produced by phase 1 other than their ability to predict data,
because they are only one set out of multiple infinities of sets, all

equally good for reproducing the observed data and predicting missing data.

On the other hand, if the required number of critical subsidiary conditions
can be stated and justified as true, phase 2 can be used to sort out realistically
the underlying influences of different jots, and the sensitivities to these influ-
ences in different environments (ilks). TheSe parameters can give considerably
more insight into forces and mechanisms than the measured or predicted data. This

is the intended purpose of factor analysis (5).

An Example Using Equation 5

DOVE was developed as an essential tool to solve the chemical problem of
separating substituent effects into field and resonance components. After proving
highly successful for this purpose, it was applied to separating numerous solvent
effects into contributions associated with anion solvation and cation solvation.
Both applications will be published separately in chemical journals. However,
we anticipate that DOVE will be as or more useful in many other fields of science,
engineering, and management. Since we want to prove that this procedure does
yield correct answers when other methods fail, and to explain it clearly to
encourage its more widespread use, we will illustrate it here by a synthetic but
easily understood geometric example which we used to test the procedure because the
answers are known. This is the problem of using data on 7 properties
(11ks in Table 1) of 10 solid right circular cylinders (of which 3 are pictured
in Figure 1) to evaluate, for each cylinder, the factors (measures or functions
of radius and height) responsible for variations in the data from one cylinder
to another, and to evaluate, for each property, the slopes (relative sensitivities
to these factors) responsible for variations in the data from one property to
another. We are pretending that we have not yet discovered a way to measure radii
and heights, but wish to calculate them from measurements of these 7 other

properties of the 10 cylinders. Otherwise this is a fairly realistic example for




z;
&
¥

=7

showing the kinds of limitations on such evaluations likely to arise from
inability to measure underlying factors directly.

We converted the data to log data (listed in Table 2) because a DOVE
phase 1 analysis on the raw data gives an overall correlation coefficient of only 0.93!
with 2 modes (6 modes would be needed) but logarithms give 1.000 with 2 modes. We
chose this example because this behavior is typical of several real physical
problems where logarithms of measured quantities are more simply interpreted than
the raw data. In chemistry, for example, one uses logs of rate constants or equi-
1ibrium constants in any attempted correlations between structure and reactivity
because they are linear functions of energy differences between structures.

Many sense responses (brightness, loudness, pitch) also appear to be logarithmic
in character.

The input data in Table 2 could have been logs of measured data. However,
instead we calculated them for cylinders having the randomly selected radii and
heights (7) shown in Table 3. Now we will pretend not to know any of the formulas
in Table 1 nor the 20 factors (log r and log h values) nor their 14 slopes in the
logarithmic formulas but proceed to deduce them from Table 2 and subsidiary
conditions only, then check all these deductions by Tables 1 and 3.

The most time-consuming phase of the analysis is the iterative adjustment of
the parameters until they satisfy eq. 1. In the first half of each cycle we use

multiple linear regression to calculate a bi’ and ¢, from the observed data z

» D Z
and the current factor values (initially :andom numbe:s); in the next half cyclij
we use multiple linear regression to calculate factors from the data and the i-
subscripted parameters. Further details are given under "Phase 1 Details'.
It is not necessary to incorporate any subsidiary conditions prior to convergence.

The slope parameters before phase 2 as we obtained them from 70 and from 50
data are shown in Table 4. They are complicated hybrid functions of the real
sensitivities to radii and heights. Phase 2 unscrambles them to give simple direct
measures of these sensitivities.

For the phase 2 transformation, we arbitrarily choose 55=0, 15=0, 31=1, and
93-1 as the four trivial conditions. Therefore, the factors will become differences
above or below those of the reference jot, cylinder 5, taken as zero, while
first-mode slopes will become ratios relative to that of the property 1 as a
standard, and second-mode slopes will become ratios relative to that of property 3,
another standard.

For the first of the two critical conditions we specify 31-0, reflecting

possible insight that face areas of cylinders are independent of cylinder height
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r (or of the second-term factor Xj)' even though we have not yet deduced the functional

form of their dependence on the first-term factor x, nor yet determined any factors

quantitively from the analysis. :
For the second of the critical conditions (the last condition) we choose
a3=a1/2 (or its equivalent, a3=%, since al=1 is used as a trivial condition),
because of three convictions: (1) that total flat face area (i=1) is just a
multiple of the circular area of one end (although we need not even know that the
multiplier Al is 2); (2) that curved area (i=3) is proportional to circumference
with a proportionality constant AZ that is independent of radius but is a function
of height (although we need not know what function it is, i.e., that AZ equals
height itself); (3) that circumference is proportional to the square root of curved
area (although we need not know the dependence of either on radius, nor that the

proportionality constant A, is 2v/m). These four statements to determine critical condition:
can be reasonably inferred‘}rom simple theoretical considerations or from guitahle
observations of another kind: they cannot be deduced uniquely from the input data of Table??
Combining, taking logarithms, and using eq. 5 for both ilks, we obtain 535j=§lgi/2+ka.

where A, is independent of the first factor (although it includes 93, Yir €15 Sq»

4
' Al’ AZ’ and Aa). Since this identity must hold for all values of lj’ if follows
that AA=0 and 33=§l/2.
Alternatively and equivalently, we could replace the last condition by a,=-a,

(or a7=—1), reflecting either a theory or observations that wire cross-section
and resistance are inversely related, even though we have not yet deduced a complete
formula for either. Although one might expect that another alternative for the
last condition could be a,"ac, implying that radius is equally influential in
affecting masses or volumes, that condition is found to be ineffective for separating
the factors (because the data for i=2 and i=6 also have the same dependence on
height). Other undesirable assumptions are orthogonality or zero covariance
between the factors because they give wrong answers in this
cylinder problem, and are unlikely to be satisfied by any small sample.

— Substitution of the chosen set of six conditions into transformation equations

10-13 gives

+

) x, = 0=t Lt

L1125 T X109
Ts ® 0 ® 85135 * Byp¥s * Epy

8y 1% (5558 = 5gyby ")/dee

| by =1 (81,85 - £yoby")/det
| i Rz o SR g W
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Solution of these six simultaneous equations give the six t values, which may
be substituted back into transformation equations 10-15 to give transformed
parameters consistent with these six conditions. This transformation converts
the previous parameters from either 70 or 50 data to the desired pure parameters
shown in Fig. 2 and listed in the last columns of Table 4.

The slopes a
The a

; are all exactly half of the coefficients of log r in Table 1.

1 slopes (and also the Ei slopes) are thus in correct ratios relative to one

another. The factor of one-half derives from one of our four less significant

subsidiary conditions, a1=1. It merely puts a2y

for property 1 as unity. In most applications of these numbers only relative

values on a scale relative to a,

values are needed, so it does not matter that these relative a_ 's have only "alf

i
of their absolute values. A slightly different way of viewing the effect cf the

trivial condition 31=1 is to say that it makes the Ej factors be 2 log r (or log 52)
instead of iog r, i.e., measures of flat face area rather than of radius. This is
a trivial difference because radius, diameter, circumference, and flat face area
would all be equally valid quantities for the height-independent factors ﬁj
to be representing, so the choice among them can be arbitrary.

Regardless of the choice of trivial conditions, the use of valid critical
conditions lets us deduce that mass has the same dependence on radius as flat face

area (since a =al), moment of inertia 1s twice as dependent on radius (since a =2§1)

and all the pioperties except 1 and 5 show the same dependence on height. Sucﬁ
deductions about relative factors and slopes and the functional forms of the proper-
ties are as detailed as one could expect from any kind of least squares procedure.
This result obtained either without or with missing data thus seems useful and

quite satisfactory.

Phase 1 Details

A s ot N s A Pk ot P N s P

Least squares (1) is simply a mathematical method of fitting data, invoked
because data are generally imperfect. Data that are believed to be products
of various unknown powers of the factors should be linearized by taking logarithms,
as 1llustrated in our example. Prior recognition or evidence for a linear

relationship is not a prerequisite for a valid DOVE analysis, but can often simplify

it by decreasing n.




e

Let the number of different ilks (i) be u, and the number of different jots (j)
be v, and the number of observed data (z j) be d. Usually data are available for
only a small fraction of the maximum of u times v combinations, but all that are
available and believed to be reliable should be used in the analysis. To dis-
tinguish between data to be used and data that are missing or rejected, we make
Eij unity if the corresponding Eij is to be used, otherwise zero. Although we have
not used weights to reflect differences in precision or reproducibility of different
data (because many measurements are made or reported only once) nor accuracy

(because that is even harder to evaluate), we do use weights to make the final

correlation coefficient for an ilk independent of its

range. Therefore we equate each weight w, in eq. 1 to the reciprocal of variance
of the Eij data for all j from the mean of Eij for that ilk.
(1 eyl
h|
= (16)

w
s
iﬁij (2447 ‘%91;1511 e

For eq. 5, simultaneous equations of forms 17-19 for each ilk and 20-21 for

each jot
2

2, § e %+ §_eijszj * &y § €% = § &y %%, (17)

20 ) ey by sty * 8y Loy - beggryz s |

ag Leg s v Doy ve Lo =1ez, (19)

3 J B ]

FM\;"' X 2 2 + z b ; w.a (z ) (20)

-3 b S4y%48 Ty 0 €19¥12424 T L 2445131784478

x Le wab + ) e, . e %02 ,me) (21)

1 S15712421 1111111 E 17=1

are obtained by substituting Eij into eq. 1 and then setting the 3u + 2v partial

derivatives of eq. 1 with respect to each parameter equal to zero. Beginning with

random numbers for Ej and )H values, one uses the u sets of three

R I o W
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equations (17-19) in three unknowns to solve for values of a5, Ei and [P
These are then used in the v sets of two equations (20-21) in two unknowns to

3

of solving these equations alternately, one of the infinite number of sets of values

solve for better values of x, and Xj' Thus by the successive approximation method

for the 3u + 2v constants consistent with eq. 1 and 5 is finally obtained. This
particular converged set, dependent on the initial random numbers, is then trans-
formed in phase 2 into the unique set consistent with the desired six subsidiary
conditions.

All calculations involving real numbers were done to a precision of 16
decimal places, using a FORTRAN IV program on an IBM 370-168 computer. While
conforming logically to the above description, our program obviated storage of both
missing data and the existence matrix by use of three simple arrays for measured
data, i, and j, each singly subscripted by only a measured datum number (k=1,2,...,d),
and by searches, when needed, through these arrays.

Convergence was achieved in a smaller number of iterative cycles by appropriate
use of overrelaxation of all the i-subscripted parameters (e.g., making changes
in them larger than calculated by multipliers of 1.6 or more in most cycles)
and by less frequent but longer extrapolations of all the factors (e.g., changing
each by a common large multiple of its total change in the last one or two cycles,
every 15-30 cycles). Such techniques are generally required for a practical solution.

The square of the correlation coefficient, deco,
deco = 1-(J J e, w, (2, .~p,.)2/d(+6-3u + 2v)
213%1°2457Ry47 /S E
.

was calculated just before each extrapolation and two cycles
later, and constancy to 12 decimal places used as a criterion of convergence. Any
extrapolation resulting in a decreased deco two cycles later was effectively
erased by return to the parameters existing just prior to extrapolation.
Deco corrects for sample size (through degrees of freedom) and for dissimilar data
ranges or unit sizes in different ilks (through weights as described above). After
convergence, it represents the fraction of the variation in Eij attributable to
variations in the parameters explicitly included in the expression chosen for Eij‘
as opposed to errors or unidentified factors.

Many more cycles are needed i1f a large fraction of the possible data are missing.
For example, in this cylinder problem we reached convergence in 1 cycle when 70
data were used, within 25 cycles when 50 data were used (deleting the 20 indicated

by stars in Table 2), but only by 321, 350, and 417 cycles when 42, 4i and 40
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data were used (8). In the last case, the data are fewer than the number of
parameters determined (21 + 20 = 41), but the subsequent transformation adds

6 subsidiary conditions to the 40 data, thereby providing sufficient information
to make all the final parameters unique and meaningful.

Non-linear least squares based on the Marquardt algorithm (9) is an
alternative method for fitting all the parameters in these or any equations,
linear or otherwise. Unfortunately, computer execution time for each cycle is
extremely long by the Marquardt procedure when the number of parameters exceeds
10, being proportional to the cube of the total number of parameters, in
striking contrast to DOVE, where it is proportional to the first power. In the
present example with 41 parameters, total execution time for convergence is 7 sec.
with 70 data and 51 sec. with 69 data (only one missing datum), vs. DOVE execution
times of 0.44 sec. with 70 data, 1.4 sec. with 50 data, and 12 sec. with 40
data (30 missing data).

Phase 2 Details

e s i st it 0 s

Normalization conditions for the factors ( ij2=x and Zyjzég) are less

j j

conven’ent for trivial conditions than selection of values for particular jots,
because they change the sizes of the units in which parameters are expressed every
time data are added or deleted.

For any set of subsidiary conditions to be acceptable, the determinant of T
must be nonzero. In the course of deriving transformation equations for more
than 100 different sets of six subsidiary conditions (appropriate to eq. 5 with
different kinds of problems), we have found it always wise to check this early
in the derivation. With many possible sets of subsidiary conditions, it is much
easier to do two or more successive transformations, incorporating some but not
all of the desired conditions in the first transformation. Substitution of the
values of previously fixed parameters often considerably simplifies the derivation
of equations for subsequent transformations.

DOVE has an enormous potential in many fields for correctly interpreting data

expressible by equation 5, and a potential unmatched by any other method when some

of the data are missing. Phase 1 should also be applicable to problems involving

three or more modes. However, with three or more modes, the phase 2 problem of

finding, justifying and incorporating the required large number of critical conditions

becomes a major obstacle in DOVE or any linear least squares, nonlinear least

squares, principal components or other factor analysis procedure purporting to
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provide meaningful parameters. Orthogonalization between factors of different
modes has often been used, but the number of such conditions is insufficient,
orthogonality is never satisfied by real data from statistically small samples,
and often would not be satisfied even by infinite-size samples when the factors
have real physical significance. For example, for substituent effects in chemistry,
the resonance and other electronic (field and inductive) factors associated with
substituents certainly have a small but undoubtedly physically meaningful positive
correlation; and for solvent effects, the two types of factors associated with

the solvent (anion-stabilizing ability and cation-stabilizing ability) clearly
have a weak but significant negative correlation. To assume that they do not
would force the derived factors to take onnumerical values that are complicated
hybrids rather than pure measures of these physical characteristics. Unless the
proper number of meaningful and valid critical conditions is incorporated, the
factors and slopes have no simple interpretation or meaning, even though all

predicted data may agree very accurately with observed data z, ..
Byy =13

~

DOVE can be useful, even when many or most data are missing, for (1) generalized
least squares fitting to evaluate a self-consistent set of all parameters in an
expression for predicting all missing data, and (2), without changing the predicted
data, to transform the set of parameters obtained in phase 1 so that each final
parameter has a simple, pure, realistic, physical meaning. Since predicted data
are expressed as ‘1‘3 +~h113 o +;gi with n product terms, phase 2 requires in-
corporation of n"+n independent subsidiary conditions, of which 2n are arbitrary,
i.e., merely fix zero reference points and scale unit sizes, but 32—11 are
critical, i.e., must be relationships between particular parameters supported by
other information. Both phases are illustrated by a two-mode application with 7 i,
10 j, hence 41 parameters, to fit the data plus the 6 subsidiary conditions.
Valid parameters are obtained although 30 of the 70 possible data are missing.
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i 11k nonlinear linear log form
1 total area of flat faces Zﬂsz 2 log Ed + log(2m)
2 mass;8 =10 g/cm ° dnzjzbj 2 log Ej + log Ej + log(ém)
+
3 area of curved surface ZHEij log Eﬁ log Ej + log(2m)
4 axle moment of inertia Gnsj“gd/Z 4 log Ej + log hj + log(dm/2)
5 aspect ratio ./h 1 - log h
P /K, e E ™ Tee L,
6 volume of circumscribed 4r zg_ 2 log r, + log it, + log 4
square prism 9= 3 =3
7 resistance between faces; ph,/mr Y ~2 log r, + log h, + log(p/m)
p=0.1 ohm cm & s 3 g
Table 3. A group of random numbers, used to generate Table 2.
Cylinder, j Radius, L, Height, hj log(gj/gs) log(gj/hs)
1 0.021658190 0.408169508 -1.61 -0.36
2 0.543617487 0.456423521 -0.21 -0.31
—1 3 0.030803025 0.153893471 -1.46 -0.78
4 0.521428823 0.799775958 -0.23 -0.07
5 0.890675187 0.930589199 (0.00) (0.00)
6 0.796412110 0.968748212 -0.05 0.02
7 0.190720081 0.059738331 -0.67 -1.19
8 0.923573375 0.606675744 0.02 -0.19
9 0.175991654 0.081358790 -0.70 -1.06
10 0.358400822 0.323721051 -0.40 -0.46

Table 1.

Cylinder properties used.

Property observed

Formula to be deduced
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Table 4. Slopes, ay and Ei
Before Phase 2% After Phase 2Jr

I1k 70 data§ 50 data§ 70 or 50 datag

: 24 by 24 2 L By

] 1,68 2.30 1.98 3.01 (1.000f  (0.00)¥ |
2 1.19 3.19 1.96 4.40 1.00 1.00 |
3 0.36 2.04 0.97 2.89 (0.50)F (1.00)F

4 2.85 5.49 3.93 7.41 2.00 1.00

5 1.31 0.26 1.01 0.12 0.50 -1.00

6 1.19 3.19 1.96 4.40 1.00 1.00

7 -2.14 3 .42 -1.99 -1.63 -1.00 1.00

After convergence to meet the least squares conditions but before parameter

transformations to incorporate six subsidiary conditions.
Relative values after incorporation of six subsidiary conditions.
Value specified by one of the six subsidiary conditionms.

Number of input data z,, used in the analysis.

1j 4




vs. relative log radius, log Sj - log r

iv

Legend for Figure 1

Figure 1. Shapes of cylinders 1, 3, and 9 in the example. This synthetic
but illustrative problem uses data on 7 measurable properties of these and

7 other cylinders to deduce factors that are pure measures of radius or
height for each cylinder (Figure 2), and also correct relative sensitivities

to these factors for each property (Table 4).

Legend for Figure 2

Figure 2. A plot of factors xj vs. factors Ej calculated by DOVE, showing

that it is superimposable on a plot of relative log height, log hj

for 10 cylinders. These factors

-~ log b_sa

S’
are calculated from either a complete (70) or partial (50 or 40) set of

logarithmic data (Table 2) on the 7 properties listed in Table 1.
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